
ADS-B Flight Tracker
By ,Nicholas Zanon Krutik Shah

Digital Signal Processing, Final Project Report

Professor Richard Pedersen

mailto:zanonn88@students.rowan.edu
mailto:shahkr85@students.rowan.edu
mailto:pedersenr@rowan.edu

Background Information
First we have to understand the basics of the Identification Friend or Foe system (or IFF).
Essentially, aircrafts use a transponder to listen to interrogation signals from a broadcaster
(such as air traffic control towers) and then will respond back with various information about the
aircraft. The response is dependent on the type of interrogation mode that is used. Modes 1-5
are for military use, while Modes A, B, C, D, and S are for civilian use. For the purposes of this
project we will focus on civilian modes, for obvious reasons. Transponders receive interrogation
signals on 1030 MHz and respond back on 1090 MHz. Mode 3A simply provides a 4-digit
squawk code (transponder code), and Mode 3C improves on this by providing altitude. Mode S
takes it a step further by allowing selective interrogation (hence the S in Mode-S). This means
that the broadcaster can interrogate different information from different aircraft separately.
Additionally, Mode-S assigns a 24-bit address to each aircraft, meaning there are 224 different
possible addresses. Compared to Modes 3A/C, Mode S allows a lot more information to be
interrogated. However, there is one issue with these modes, and it is that they require the
interrogator to figure out the position based on where the signal is coming from. With ADS-B,
this mitigates that issue because ADS-B collects and responds back with that information from
the GPS module(s) found within the aircraft. All that is needed from the interrogator is to decode
the ADS-B signal.

Our goal was to put together an ADS-B, to monitor air traffic from the surrounding area. We
followed a Tutorial from Make Magazine where the user utilized a BeagleBone Black board, an
RTL-SDR kit like the one we used in class, and a program called “Dump 1090 is a Mode S
decoder specifically designed for RTLSDR devices”. The BeagleBone Black runs on Debian
Linux, which we can access through SSH from a local network. The project includes a software
that automatically tunes the receiver to 1090MHz, the frequency at which commercial air flight
data is transmitted. According to mode-s.org: “Parameters such as position, velocity, and
identification are transmitted through Mode S Extended Squitter (1090 MHz).”. This data will be
output to a webpage server running off of the Beaglebone board. There we will see a map and
the location of the airplane we are tracking.

We also referenced The 1090 Megahertz Riddle: A Guide to Decoding Mode S and ADS-B
Signals. (TU Delft OPEN; 2021. doi:10.34641/mg.11) in order to learn more about the decoding
process of the Mode S signals used to track the plans.

Flight Tracker
We followed the Tutorial from Make Magazine and were welcomed with the following webpage
in Figure 1: Flight Tracker interactive Page. This page plots the information that your SDR kit
received with a little airplane symbol, on a map of the area in which you are receiving it. On the
right side of the screen, you will see the number of planes that the software has recognized.
When selecting a flight, the menu will show you the hex formatted ICAO, the plane’s callsign,
altitude, speed, and current coordinates updates every 10ms.

https://www.faa.gov/nextgen/programs/adsb/
https://makezine.com/projects/tracking-planes-with-rtl-sdr/
https://github.com/antirez/dump1090
https://github.com/antirez/dump1090
https://mode-s.org/decode/content/ads-b/1-basics.html
https://primo.rowan.edu/discovery/fulldisplay?docid=cdi_oapen_doabooks_71607&context=PC&vid=01ROWU_INST:ROWAN&lang=en&search_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=Everything&query=any,contains,The%201090%20Megahertz%20RiddleA%20Guide%20to%20Decoding%20Mode%20S%20and%20ADS-B%20SignalsJunzi%20SUNFaculty%20of%20Aerospace%20EngineeringDelft%20University%20of%20Technology&facet=rtype,exclude,reviews,lk&facet=rtype,exclude,reference_entrys,lk
https://primo.rowan.edu/discovery/fulldisplay?docid=cdi_oapen_doabooks_71607&context=PC&vid=01ROWU_INST:ROWAN&lang=en&search_scope=MyInst_and_CI&adaptor=Primo%20Central&tab=Everything&query=any,contains,The%201090%20Megahertz%20RiddleA%20Guide%20to%20Decoding%20Mode%20S%20and%20ADS-B%20SignalsJunzi%20SUNFaculty%20of%20Aerospace%20EngineeringDelft%20University%20of%20Technology&facet=rtype,exclude,reviews,lk&facet=rtype,exclude,reference_entrys,lk
https://makezine.com/projects/tracking-planes-with-rtl-sdr/

Figure 1: Flight Tracker Interactive Page

Figure 1 shows flight DAL417, a Delta Airlines flight headed towards New York. We used google
to confirm this, shown in Figure 2. We found that the software would always use call signs with 3
letters in the beginning, however the google results often showed 2 beginning letters.

Figure 2: DAL417 confirmation.

Decoding ADS-B Messages
While reading through the source code of “dump1090”, we realized that we weren’t entirely sure
what exactly we were looking for. We turned to the Campbell library to find some literature, and
used “The 1090 Megahertz Riddle: A Guide to Decoding Mode S and ADS-B Signals” to learn
more about what was being transmitted. We learned that Mode S uses “Pulse Position
Mod-ulation (PPM)” to transmit signals, which is a method of transmitting square waves at a
given frequency (in our case, 1090MHz). The software takes these signals and converts them to
hexadecimal. From there, the data is divided into 4 sections; the preamble, the ICAO address,
the ME field (message), and the PI field (parity). Figures 3a and 3b shows an example of the
raw hex data broken up into these fields.

Figure 3a: ADS-B data raw

Figure 3b: ADS-B Sections

These fields are further deconstructed to reveal information about the flight. The ME field
contains information including the Altitude, latitde coordinates, and longitude coordinates. The
ME field is converted to decimal, broken up into sections, and then each section’s decimal value
is used in a calculation. Figure 4 shows the ME fields’ sections.

Figure 4: ME Field Sections

The book goes into great detail about the calculations for each piece of information, while
following along with an example.

We attempted to follow along and decode the hex data of some flights we tracked with the
program, however we were getting stuck at the step of finding the call sign. We believe that the
callsign is linked to the ICAO address, however at the time we were trying to find it solely within
the TC section of the ME field. The callsign is transmitted using the lower 6 binary bits of ASCII
characters. Figure 5 is the book’s example of callsign “KLM1023”.

Figure 5: Callsign decoding example

Problems
We ran out of time before fully decoding a signal that we found, we got stuck at finding the
flight’s callsign. In the section above, we show the ME field being decoded to show both the
plane’s location, and the flight’s callsign. We were unable to figure out the difference between
the two ME fields, and when it shows the callsign and when it provides the flight’s location.

Conclusion
While we were unable to do a deep dive into the source code, or fully decode a flight’s
transmission, we did learn a great deal about ADS-B and Mode S transmissions. This was a
great introduction to the practice, and can be used as the groundwork for projects in the future.
Using PPM to transmit signals, then decoding those signals within another systemWe were
focused on decoding the ME field, as that provides the vital information specifically about the
flight itself.

Firstly, to start the decoding process, we need to collect raw data from the BeagleBone Black.
To do this, we can start the dump1090 with the following command in the terminal window:

./dump1090 --raw

The results that will show will be in hexadecimal. For our demonstration for decoding, we
received the following raw value on the BeagleBone Black:

8dacaf0be11d2e00000000c98c39

Below, we started decoding the raw value. First, we have to separate the different fields in hex.
Afterwards, we have to convert them to binary. For our purposes, the ICAO field and the ME
field are most important. The acronyms are defined below.

Acronyms:
DF = Downlink Format
CA = Transponder Capability

ICAO = ICAO Aircraft Address (can be looked up, or matched with dump1090 interactive mode)
ME = Message
PO = Parity/Interrogator

DF CA ICAO ME PI

Hex 8D ACAF0B E11D2E00000000 C98C39

Binary 10001 101 101011001
0101111000
01011

111000010001110100101110000
00000000000000000000000000
000

11001001100011
0000111001

The ICAO address in hexadecimal can be looked up on Google to find flight data, or can be
found in dump1090’s streamlined flight view. The flight is found below with the corresponding
ICAO address in the leftmost field in the column labeled “Hex”:

The RTL-SDR collected 131 different messages from this aircraft from the point we started
dump1090 to when we took this screenshot. We are decoding only one of those messages. Our
goal is to further decode our signal beyond just the ICAO address. We need to focus on the ME
field, which is what contains our message. Here, we need to further split up the binary code and
the way it is split up is determined by the TC. The ME field is 56 bits, and the first five bits are
considered the “Type Code” or TC. This determines what type of message we are decoding. In
our case, the TC is 11100, which is 28 in decimal. Upon further research in the 1090MHz Riddle
article cited in the background, we discovered that a TC of 28 means the message indicates
aircraft status. We unfortunately could not figure out how to decode the rest of the ME field as
there were no resources available describing an aircraft status message TC.

